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Abstract

In this project, we investigated how alternative attention mechanisms can improve
the performance of the GPT-2 model in the tasks of Sentiment Analysis, Paraphrase
Detection, and Sonnet Generation. In particular, we explored the tradeoffs between
training/evaluation time and model utility in these three downstream tasks when
each of the attention mechanisms (standard dense self-attention, FlashAttention
[1], Sliding Window Attention [2], and Attention Sink [3]]) are applied. We find
that in these downstream tasks, FlashAttention provides the most speedup and is
able to maintain relatively high performance, while Sliding Window and Attention
Sink achieve a lower runtime compared to the baseline but suffer on performance
as a result.

1 Key Information

* Mentor: None for default project
* External Collaborators: None

¢ Sharing project: None

2 Introduction

General Pretrained Transformer (GPT) models have demonstrated their effectiveness in NLP tasks
like question answering and sentiment analysis. GPTs follow the paradigm of "pretrain, then fine-
tune" to achieve strong performance in down-stream tasks. The release of GPT-2 highlighted that
scaling up model and data size significantly improves performance, ushering in the era of Large
Language Models (LLMs) [4]. While scaling unlocks many opportunities, it also introduces new
challenges for model size and hardware.

As LLMs grow, transformer models are also getting larger and more popular due to their ability to
capture contextual information through self-attention. Longer sequences can enable self-attention
models to capture more context, but it comes at a cost of the models’ memory and operation
complexity increasing quadratically with sequence length [S]] . Several attention-optimization models
have been proposed, including sparse-approximation, low-rank approximation, and partitioning long
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contexts. But those approaches either fail to resolve memory bottlenecks or they lose key contextual
information during partitioning [[L] [2]].

More recent models, such as FlashAttention, Sliding Window, and Attention Sink, claim to address
these shortcomings. To assess their effectiveness in practice, we evaluate the tradeoffs between run-
time and performance of these attention models in GPT-2 across three downstream tasks: Sentiment
Analysis, Paraphrase Detection, and Sonnet Generation.

3 Related Work

3.1 Self-Attention in Transformer Models

Self-attention plays a pivotal role in the performance of transformer models, especially in NLP tasks.
In particular, the attention mechanism allows each the model to relate between different words within
the input text through a scaled-dot-product calculation. This operation is crucial to the Transformer’s
ability to focus on relevant parts of the input text as well as model the dependencies between different
parts of text [6]. The typical causal multi-head self-attention, referred to as "dense" self-attention,
entails multiple scaled-dot-product computations to achieve the benefits discussed above. However,
these operations are computationally very expensive, with a complexity of O(n?) (see "Approach" for
further explanation). As a result, dense attention does not scale with larger context lengths and proves
to a runtime bottleneck in Transformer models. This problem has motivated substantial research on
improving the runtime of the attention computation in order to improve overall model efficiency.

3.2 Accelerating Attention

The primary research direction for improving transformer models focuses on how to reduce the
runtime of the crucial yet expensive attention calculation. We observe that the prior work that has
sought to improve the runtime of the attention can be categorized into three main approaches: (1)
Sparse Attention [[7] [2] , (2) Kernel Methods [8] (both of which aim to reduce the computational
complexity), and (3) Hardware Optimization [1].

Sparse Attention methods aim to reduce the computational complexity of the attention computation
from the O(n?) standard dense attention requires; they achieve this by selecting certain tokens within
the full attention matrix for the softmax computations. Kernel methods instead attempt to replace the
softmax operation with a feature map approximation, such as an Exponential Linear Unit (ELU) [S]],
to reduce the computational complexity. Hardware-optimized attention techniques instead aim to
take advantage of advancements in parallel hardware and utilize GPUs more efficiently rather than
reduce the computational complexity of dense attention.

We will investigate alternate attention mechanisms that both reduce the computational complexity
through sparse attention techniques (Sliding Window and Attention Sink, also referred to as "Slide"
and "Sink," respectively, for conciseness) the hardware-optimized method FlashAttetion of computing
dense attention (referred to as "flash").

4 Approach

4.1 Baseline GPT-2

We implemented the baseline GPT-2 model using the GPT-2 code template provided by CS224n
course staffs. GPT-2 is a decoder-only transformer model with 1.5 billion parameters [4]. It uses byte
pair encoding (BPE) to decompose words into tokens. After converting each tokens to ids, GPT-2
uses a trainable embedding layer across each token.

We applied dense causal multi-head self-attention in our baseline GPT-2 model [6]]. The attention
computation involves the query, key, and value matrices Q, K, V, respectively, and is mathematically
denoted as:

T

Attention(Q, K, V) = softmax( Q
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Multi-head attention then allows the model to focus attention on multiple regions and connect different
dependencies by concatenating multiple attention "heads". This is represented as:

MultiHead(Q, K, V) = Concat(heady, ..., heady, )W©

where head; = Attention(QW?, KWK VW) and W WE WY, W are the correspond-
ing weight matrices.

We further applied a "causal” mask, which masks the attention values on later tokens in the sequence
and ensures that attentions is only calculated with respect to previous tokens. Finally, we apply an
additional "padding" mask which ensures that the attention calculation does not take into account
padding tokens. While multi-head and causal aspects of the attention remain fixed throughout
all of our approaches, we vary the softmax computation across the the subsequent three attention
mechanisms. Figure [I]shows a visualization comparing all the self-attention mechanisms used.

4.2 FlashAttention

As recent technological innovations have accelerated computations drastically, compute speed has
substantially out-paced memory speed; in turn, the majority of operations Transformers rely on
are bottlenecked by slow memory accesses. This is why compute-focused approaches like sparse-
approximation and low-rank approximation can fail to yield real world speedups, or come at reduced
performance for downstream tasks [1] [7] [2]. FlashAttention addresses the memory bottleneck in
long sequences by minimizing costly off-chip access through an I0-aware approach. FlashAttention
achieves this Io-Aware attention computation through two techniques: Tiling and Recomputation
(see Appendix for full FlashAttention algorithm).

Tiling relies on the insight that we can compute attention by blocks by keeping track of two statistics:
m(z) and I(x). To see this, we define the softmax operation for a vector z € R? as follows:

m(z) = max . flz) = [emfm(x) ezB*m(Z)] , L(z) = Zf(x)“ softmax(z) = Jlj((:;))

Note that the softmax operation couples columns of K, so we can use the above definitions to find
the softmax of two such vectors (1), z(2), namely 2 = [z(V2(?)] € R?E as follows:

m(x) = m([x(l) $(2)]) — maX(m(x(l)),m(x(Q))), flz) = em(m(l))—m(w)f(x(l)) em($(2))—m(a:)f(x(2)):| ,

() = £([zD 2@]) = m @ =m@ (W) 4 emE)=m@ () softmax(z) = J;((:;))

The equations above show that we can split the matrices Q, K, V into blocks, compute the softmax
for the blocks individually, calculate the additional m(x) and I(z) statistics, and combine the results
to get the overall softmax. Thus, this can be highly parallelized while limiting the IO operations to
GPU kernel; once the blocks of Q, K,V are loaded to the fast SRAM for the GPU computations, IO
operations are not needed to until the complete computation is complete.

The key insight of Recomputation is the observation that the entire O(N?) intermediate attention
values do not need to be stored for the backward pass. Instead, by only storing and using the
final output attention matrix O = PV € RV*? (where N is the context length and d is the head
dimension) and the statistics m, I, we can quickly recover the intermediate matrices S = QKT €
RNXN P = softmax(S) € RV*HV,

While the traditional attention computation would require reading/writing each of O, S, and P for
every computation and backward pass, FlashAttention minimizes the IO of the attention computation
and avoids the expensive 10 runtime-bottleneck of GPU computation.

While we use the Dao Al Lab’s official paper implementation to leverage CUDA GPU-optimizations,
significant implementation was required to integrate this API in a way that was compatible with our
larger GPT-2 model that differed from their implementation. This applies to all attention extensions
as well (see Appendix for further explanation these implementation details).



4.3 Sliding-Window Attention

A simplified version of the LongFormer Sliding-Window Attention was implemented in the model.
This implementation, which takes in one parameter, namely the window overlap w, divides the K and
Q matrices, which have dimensions (batch size bs, number of heads h, sequence length s, attention
head size hs), into chunks with sequence length twice the window overlap.

K, = K[, iw: (i + 2)w, ] Qi = Q[ iw = i(i + 2w, Vi e {OH —1}

From this process, each subsequent chunk overlaps with the previous chunk by the specified window
overlap w and that these chunks span the entire sequence length s. After the chunking process
is complete, each chunk K; is multiplied with their respective chunk Q; to produce a diagonal
component of the final attention score matrix A. Since each chunk has sequence length twice the
window overlap, this results in a time complexity of O(s), which is a dramatic speed up compared to
normal self-attention, wich has a time complexity of O(s?).

A; = QK/ Vie{o,...,[iJ—l}

w

After the A; are computed, they are aggregated and superimposed in the same sliding manner as K;
and Q; were produced to give the final attention score matrix A.

Al iw : (14 2)w,iw : (i + 2)w] = Ay, Al:,:, 4, k] = 0 otherwise

we{o,...,BJq}

This attention score matrix A is then processed as normal, with the result being scaled, passed
through softmax, and then being multiplied by V.
A
Attention(Q, K, V) = softmax(——=)V
Vi
4.4 Attention with Attention Sinks

This method operates similarly to Sliding-Window Attention but with the additional augmentation of
each token attending to the first couple tokens. This augmentation comes from the insight that the
first couple of tokens in an attention computation often have high attention scores even if the tokens
are not significant. This is due to the softmax function requiring attention scores to sum to 1 even if
the token does not have a match with any of the prior tokens. Thus, the attention is offloaded into the
first couple tokens [2]]. Because of this, it was off interest to see if incorporating attention sinks would
improves the performance of the model especially compared to using Sliding-Window Attention.

The implementation of attention with attention sinks follows very similarly to the implementation
for the simplified LongFormer Sliding-Window Attention above. The main augmentation is that in
addition to each corresponding chunk K; and Q; being multiplied together to get Q;, all the chunks
K are also multipled by the first chunk for Q, namely Qq, to produce S;. Or in other words, the first
n tokens where n is twice the window overlap w attends to all other tokens in the query. Note that
this still maintains a linear time complexity O(s) for computing the attention score matrix A, while
improving the performance from Sliding-Window Attention.

S; = QK[ v@'e{o,...,FJ—1}

w
Once these new S; and A; are computed as before, these are then aggregated in a similar manner
as for sliding window attention to produce the attention score matrix, but with the first 2w columns
having entries corresponding to S;.

Al iw s (i 4+ 2w, iw : (i + 2)w] = Ay, Al siw: (i 4+ 2)w,0: 20] = 8;

And as before, this attention score matrix A is processed as normal.

Attention(Q, K, V) = softmax( 'V

A
Vi
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Figure 1: Visualization of Attention Mechanisms

S Experiments

5.1 Data

There are three tasks for the default project: sentiment analysis, paraphrase detection, and sonnet
generation [9]. Sentiment analysis uses two movie review datasets: SST and CFIMDB. SST contains
12k single-sentence reviews labeled by three human judges on a five-point sentiment scale, while
CFIMDB includes 2k highly polar, multi-sentence reviews with binary sentiment labels. The inputs
of the Sentiment Analysis task are the reviews and the output is the sentiment as categorized in one
of 5 classes: "Negative", "Somewhat Negative", "Neutral", "Somewhat Positive", and "Positive".
Paraphrase detection relies on the Quora dataset, which comprises 400k question pairs with binary
labels indicating whether the pairs are paraphrases. The inputs of the Paraphrase Detection task are
the question pairs, and the output is "Yes" or "No" depending on if they are paraphrases of each other.
Finally, sonnet generation is based on 154 14-line sonnets written by Shakespeare. Those sonnets are
in iambic pentameter, and most have the traditional rhyme scheme of abab cdcd efef gg. The input of
the Sonnet Generation task is a starting text used as a context seed, and the output is a sonnet.

5.2 Evaluation method

We used task-specific evaluation metrics to assess model performance [9]]. For sentiment analysis, we
measured accuracy by comparing GPT-2’s final token embedding predictions to the true development
set labels. Paraphrase detection was similarly evaluated based on prediction accuracy against the
true labels. We also calculated the confusion matrix as well as fl-score, precision, and recall to
evaluate the performance of these classification tasks (see Appendix for further explanation of these
metrics). For sonnet generation, we employed the CHRF score to quantify how closely GPT-2’s
generated sonnets aligned with Shakespeare’s language distribution. During evaluation, the first three
lines of each of the 12 held-out test sonnets were provided as prompts, and the model generated the
remaining lines. Besides the model’s performance, we also recorded the model’s runtime for training
and evaluation. Doing so can help determine the efficiency gains of the new attention mechanisms.

5.3 Experimental details

All fine-tuning and testing were conducted on a GCP L4 GPU. The project consisted of two main
phases. The first phase involved implementing a GPT-2 baseline and tuning it to meet performance
targets for SST, CFIMDB, paraphrase detection, and sonnet generation. This phase required debug-
ging and parameter optimization to achieve the desired results. For SST and CFIMDB, we settled on
the default parameter (epoch=10, Ir=1e-3) with batch size increased to 64. Additionally, full model
trials used a lower learning rate of le-5. For paraphrase detection, we used the default parameter
(epoch=10, Ir=1e-5) with batch size modified to 32, which is the max batch size a L4 GPU can handle.
For sonnet generation, we used the default parameter (epoch=10, Ir=1e-5, batch size=8) with model
size increased to gpt2-large. The max batch size a L4 GPU can handle in this case is 8. The second
phase focused on integrating three attention extensions: flash, slide, and sink. Since tuning the extra
parameters (overlap and sink size) of slide and sink attention yielded no significant improvement, we
used slide and sink’s default values for all trials. Slide attention’s overlap is 4, and sink attention’s
overlap is 4 and sink size is 4.



Metric Parameters Target Baseline
SST Last Linear Dev Default + batch size=64 0.462 0.457
SST Full Model Dev Default + batch size=64 + lr=1e-5 | 0.513 0.545
CFIMDB Last Linear Dev | Default + batch size=64 0.861 0.865
CFIMDB Full Model Dev | Default + batch size=64 + Ir=1e-5 | 0.971 0.984
Paraphrase Dev Default + batch size=32 0.893 0.886
Paraphrase Test Default + batch size=32 0.851 0.858
Sonnet Dev Default + model size=gpt2 large | 41.103 41.968
Sonnet Test Default + model size=gpt2 large | 41.297 42.177

Figure 2: Our GPT-2 implementation results vs the target for each task provided on Ed and the final
project document. Default parameter is 10 epochs, learning rate (Ir) of 1e-3, and batch size of 8.

For all tasks, we measured the runtime per training epoch and evaluation step. For binary classification
tasks, we tracked validation accuracy and used a confusion matrix to capture true positives, true
negatives, precision, recall, and F1 score. For the 5-labels SST, we recorded validation accuracy and
its confusion matrix. For sonnet generation, we evaluated performance using the CHRF dev score.
Since sonnet generation produces a set of 12 sonnets after each epoch, we measured the time taken
for their generation instead of the standard evaluation time. We recorded the average generation time
over ten epochs due to the fluctuation of sonnet generation time for each epoch.

Paraphrase detection had a constraint of three test submission attempts, which was fewer than the
number of models we aimed to compare (one baseline and three extensions). As a result, we did not
use test accuracy for baseline vs extension comparisons.

5.4 Results

After parameter finetuning, our GPT-2 implementation came close or surpassed the target for all the
dev and test cases, as shown in[2] After we got our baseline set up, we implemented the attention
extensions and ran them on the three downstream tasks. To accommodate for space, we only included
the table of results for our leader board results, Paraphrase Detection, and Sonnet Generation in
figures 2, 3, and 4 of the main paper; the remaining data, including confusion matrices, Sentiment
Analysis results, and runtime graphs are located in the Appendix as Figures 5-12 for further review.

* SST and CFIMDB: In Fig. [f] the last linear layer shows no significant runtime difference between
attention mechanisms, and this is expected for the smaller model. In the full model, flash has the
most decrease in runtime while retaining performance close to Baseline, as shown in Fig. [I0]and
Fig. [12] While slide and sink has slightly lower runtime than Baseline, both models have worse
performance than baseline for last-linear layer (Fig. [0]and Fig. [TT) and full-model (Fig. [I0]and Fig.
[[2). Fig. is a plot summarizing the accuracy for each model in sentiment analysis.

» Paraphrase Detection: Flash, Slide, and Sink run slightly faster than the baseline as expected Fig.
Bl While Flash maintained baseline accuracy and Slide performed slightly worse, Sink’s accuracy
and F1 score were significantly lower than expected. An interesting observation is that all attention
models had similar true negative scores, but the most notable difference was in their true positive

rates Fig.

* Sonnet Generation: In Fig. [4] there is a very small training runtime difference between the four
attention models, probably because the baseline runtime is already low. But surprisingly the average
sonnet generation time slightly differs between attention models. Flash and Slide performed close
to Baseline, while Sink is behind the rest.

6 Analysis

6.1 On Model Utility

We observe that across the downstream tasks, FlashAttention had the best performance compared
to the alternate attention mechanisms of Sliding Window and Attention Sink, closely matching the



Attention | Training Time | Dev Time | Final Final Dev | Precision | Recall | F1 Score
per Epoch per Epoch | Training Loss | Accuracy

Baseline | 45 mins 2 mins 0.39 0.884 0.82 0.87 0.85

Flash 42 mins 85 secs 0.386 0.885 0.84 0.84 0.84

Slide 43 mins 90 secs 0.533 0.752 0.75 0.48 0.59

Sink 43 mins 90 secs 0.631 0.635 0.5 0.16 0.25

Figure 3: Our GPT-2 implementation vs the three attention extensions for paraphrase detection. Since
paraphrase detection is a binary classification, we can evaluate with the F1 score. "Dev Time" refers
to the evaluation time after the epoch

Attention Final Training Runtime per Avg. Gen Time Dev CHRF
Loss Epoch per Epoch Score

Baseline 231 19 secs 50 secs 41.618

Flash 2.413 17 secs 75 secs 41.968

Slide 4417 18 secs 45 secs 40.78

Sink 3.266 18 secs 37 secs 37.05

Figure 4: Our GPT-2 implementation vs the three attention extensions for sonnet generation.

baseline performance of standard dense self-attention. Sliding Window Attention and Attention
Sink both had reduced performance on the three downstream tasks; this outcome is inline with our
expectations, as both these approaches compute attention between fewer tokens and are therefore
unable to model the dependencies as well as dense self-attention as implemented in our baseline and
FlashAttention. This reflected across all our performance metrics, including precision, recall and
F1-scores, that match the closely to the baseline for FlashAttention but fall short for Sliding Window
Attention and Attention Sink.

An interesting result, upon analysis of the confusion matrices, is that the different attention mecha-
nisms create different points of failure for the model. While our baseline GPT model and FlashAtten-
tion model had a fairly distributed errors in evaluation for Paraphrase detection (misclassifying as
"Yes" or "No" in a somewhat balanced manner), Attention Sink was more prone to false positives. On
the other hand, Sliding Window Attention had a somewhat larger tendency to report false positives
than the baseline, though not to the extent of Attention Sink. This disagrees with the principle behind
Attention Sink, that including earlier context in the attention calculation could provide better insight
into dependencies between tokens with the sequence that Sliding Window - however, our experiments
suggest that this feature of Attention Sink is actually detrimental to performance in the downstream
task of Paraphrase Detection. We hypothesize this effect is due to format of questions, which may
have similar ways of starting the sentence even if two questions are dissimilar in their meaning.

In the task of Sonnet Generation, Attention Sink also achieved the lowest CHRF score, though not
by a substantial margin compared to Sliding Window Attention. Overall, we noticed that all three
alternate attention mechanisms achieve similar, if not slightly lower, performance compared to the
standard. This suggests that optimized attention mechanisms may be better suited to downstream
generation tasks such as Sonnet Generation as opposed to the classification tasks like Sentiment
Analysis and Paraphrase Detection.

6.2 On Model Runtime

We observe that the alternate attention mechanisms (FlashAttention, Sliding Window, and Attention
Sink) achieve a faster training and evaluation time across the downstream tasks (Paraphrase Detection
and Sonnet Generation) when compared to the baseline dense self-attention. Across Fig. [8] we saw
the greatest speedup with FlashAttention, while Slide and Sink have a smaller speedup over the
baseline.

An unexpected result emerged in the Sonnet Generation task: FlashAttention took longer to generate
sonnets than the other attention mechanisms, making it an outlier in our experiments. This may be



due to the overhead associated with parsing and generating longer token sequences, which increases
evaluation time. In particular, FlashAttention may incur higher I/O costs per access compared to
other downstream tasks, which offsets the efficiency gained from Flash’s lower number of I/O access.

Overall, these results are in line with our expectations, since the mechanisms of Sliding Window
Attention and Attention Sink primarily focus on reducing the computational complexity of the
attention calculation while FlashAttention primarily focuses on making better use of GPU hardware
to compute standard dense self-attention faster. Though all three attention mechanisms make use of
the GPU, FlashAttention’s insight into reducing read/write GPU operations allows it to eliminate IO
overheads that other attention mechanisms suffer from. Doing so enables Flash to more effectively
realize the speedups achieved by GPU matrix computations. Our experiments indicate that the GPU
10 overhead has a greater impact on the training and evaluation time of the model compared to the
complexity of the O(n?) attention calculation. As a result, we find that on these downstream tasks
reducing computational complexity of the attention mechanism matters less than reducing the 10
bottleneck, as both Sliding Window Attention and Attention Sink rely on slow memory read/writes
that failed to achieve much speedup.

6.3 Tradeoffs

Our results show that reducing the computational complexity of attention calculations comes at
a significant cost to performance. Since attention scores consider fewer tokens, calculations are
faster, but the model struggles to capture dependencies needed for downstream tasks. Sliding
Window Attention and Attention Sink introduce a tradeoff that sacrificed model utility for faster
training/evaluation time. In contrast, standard dense self-attention achieves the best performance but
at the cost of significantly longer training and evaluation.

FlashAttention best mitigates the tradeoff between runtime and utility. It matches the baseline’s
performance across multiple metrics while showing substantial speedup in training and evaluation.
Among the attention mechanisms we evaluated, FlashAttention offers the best overall performance
considering both model utility and efficiency.

7 Conclusion

We find that alternate attention mechanisms pose a tradeoff between model utility and efficiency across
the three downstream tasks of Sentiment Analysis, Paraphrase Detection, and Sonnet Generation.
The highest performing model used standard dense self-attention, though it also took longer to
train and evaluate. Approaches that reduced the computational complexity of the O(n?) attention
operation, such as Sliding Window Attention and Attention Sink, did provide speedup but suffered
in performance relative to the baseline. FlashAttention, which implemented dense self-attention
in an IO aware manner than took advantage of GPU computation, best mitigated this tradeoff by
performing close to the baseline across multiple metrics and achieving the most speedup. While
our work successfully compares the impact of multiple attention mechanisms on model utility and
efficiency, we recognize that the scope of the downstream tasks these methodologies were applied to
were limited. For future work, we would explore the tradeoffs between model utility and runtime
across various other downstream tasks and compare our findings with other attention mechanisms.

Team contributions

James implemented the experimental setup for the three downstream tasks and integrated the attention
extensions into the baseline model. He also implemented the hyperparameter tuning and data
collection we needed to produce the data and figures in the paper. Anisha implemented the base GPT-
2 model, FlashAttention extension, and sanity checks to test the attention modules separately prior
to running the experiments. Hollie implemented the Sliding Window attention and Attention Sink
attention modules. All three team members equally contributed to the conceptualization, research,
and paper writing for the project.
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A Appendix

A.1 Precision, Recall, F1 Scores

Using the confusion matrix, we are able to get precision, recall, and the f1 score for tasks with binary
classification.

* Precision: Out of all positive predictions, how many of them are correct? Equation expressed
asTP/(TP+ FP)

 Recall: Out of all actual positive cases, how many did my model predict correctly? Equation
expressed as TP/(TP + FN)

* F1 Score: Balancing precision with recall. Equation expressed as 2T'P/(2T'P+ FP+ FN)

A.2 Implementation Details

Though we were using APIs from other libraries for the implementation of the attention operation
itself across FlashAttention, Sliding Window, and Attention Sink, substantial wrapper implementation
we developed from scratch was required to integrate these APIs into our GPT-2 model. This is because
the APIs made different assumptions to the input structure, output structure, masking requirements,
and presence of padding tokens that diverged significantly from our baseline model. For instance,
FlashAttention requries unpadded queries, keys, and values, which needed to be carefully extracted
from our padded inputs. Along a similar vein, Sliding Window Attention and Attention Sink had
required wrapper implementation to take into account the causal and padding requirements. All three
implementations also required differently structuring our wrapper classes to fit both our GPT-2 model
and the APIs, which can be observed in the codebase.

A.3 Extra Plots from Results

This section contains extra plots summarizing the runtime, accuracy, and confusion matrix of the
three downstream tasks. They are still referenced in the results section, but are included here due to
space constraints.
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Last Linear Layer
SST CFIMDB SST CFIMDB | SST CFIMDB | SST CFIMDB
Attention | Train Time per Epoch | Dev Time per Epoch | Train Time per Epoch | Dev Time per Epoch
Baseline | 11 secs 57 secs 10 secs 11 secs 22 secs 69 secs 20 secs 20 secs
Flash 11 secs 54 secs 10 secs 10 secs 15 secs 50 secs 15 secs 14 secs
Slide 11 secs 57 secs 10 secs 11 secs 20 secs 64 secs 19 secs 20 secs
Sink 11 secs 57 secs 10 secs 11 secs 20 secs 63 secs 19 secs 20 secs

Figure 6: Comparing the runtime between our Baseline vs the three attention extensions on all trials
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Figure 7: Comparing the paraphrase detection confusion matrix between our Baseline vs the three

attention extensions.
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Figure 10:

Our Baseline vs the three attention extensions on full model SST.
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Figure 11: Our Baseline vs the three attention extensions on last linear layer CFIMDB. Since

CFIMDRB is a binary classification, we can use the F1 score.
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Figure 12: Our Baseline vs the three attention extensions on full model CFIMDB.

12




A.4 FlashAttention Algorithm

This is the algorithm for standard dense self-attention, followed by the IO-aware FlashAttention
algorithm

Algorithm 1 Standard Attention Implementation

Require: Matrices Q, K,V € RV*? in HBM.
1: Load Q, K by blocks from HBM, compute S = QK T, write S to HBM.
2: Read S from HBM, compute P = (S), write P to HBM.
3: Load P and V by blocks from HBM, compute O = PV, write O to HBM.
4: Return O.

Algorithm 2 FlashAttention Algorithm

Require: Matrices Q, K,V € RV*? in HBM, on-chip SRAM of size M.
1: Set block sizes B, = {%] , B, = min ([%1 ,d).
2: Initialize O = (0)yxq € RV*4 ¢ = (0)y € RV, m = (—o0)y € RY in HBM.

3: Divide Q into T;. = [Bﬁ—‘ blocks Q1,...,Qr. of size B, x d each, and divide K,V in to

T. = {Bﬂ—‘ blocks K1, ..., K7 and Vi,...,Vr ,of size B, x d each.

4: Divide O into T, blocks Oy, ..., O, of size B, x d each, divide ¢ into T,. blocks ¢, ..., ¢, of
size B, each, divide m into T blocks mq, ..., mr, of size B, each.

5. for1 <j <T.do

6: Load K, V; from HBM to on-chip SRAM.

7: forl1 <i<T,do

8: Load Q;, O;, ¢;, m; from HBM to on-chip SRAM.

9: On chip, compute S;; = QK] € RPr*FBe,

10: On Chip, compute mij = TOWHI&X(SU) € RBT, Pl‘j = exp(Sij — mij) € RB"XBC
(pointwise), £;; = rowsum(P,;) € R,

11: On chip, compute m}*V = max(m;, Mm;;) € RBr, foew = emi—miy 4
€m”_m;‘ewfij S RB-,

12: Write O; « diag(£2°")~!(diag(¢;)e™ ™" O; + ™ ~™i"" P;;V;) to HBM.

13: Write ¢; < £7°V, m; <~ m}°¥ to HBM.

14: Return O.
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