Project Overview

LLMs and Transformer Models have increased in popularity
Rely on self-attention to achieve state-of-the-art
performance, but this operation creates a bottleneck in
runtime due to quadratic complexity
(Dense) Self Attention: Allows model to extract
dependencies and relevant info from tokens through a
scaled-dot-product calculation - runs in O(n?)!
Accelerating Attention: Three approaches to accelerating
attention:
o Sparse Attention*: Reduce O(n?) to polynomial complexity
by using select token to compute attention
o Kernel Methods: Replace softmax with a feature map
approx. to reduce computational complexity
o Hardware Optimization*: Leverage hardware parallelism
to reduce the runtime of dense self-attention computation

e Explore alternate attention mechanisms that reduce

computational complexity (Sliding Window Attention,
Attention Sink) or optimize hardware for attention
computation (FlashAttention)

Investigate the tradeoffs between model performance and
runtime in 3 downstream tasks

FlashAttention best mitigates these tradeoffs with high
performance and low runtime compared to the baseline

Dataset and Metrics

Center of Attention

Dense Self-Attention Sliding-Window Attention Sink

Flash Attention: Address memory bottleneck in long sequences by minimizing costly
off-chip access through an l|0-aware approach using Tiling and Recomputation. Relies on
computation of additional statistics m(x), I(x)
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Sliding Window: Divides K and Q matrices into chunks. Each chunk is multiplied with its
corresponding chunk to produce a banded matrix.
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Attention Sink: Similar to Sliding Window, but includes first few tokens for offloading
attention (these have high attention scores when current token has nothing to attend to).
o
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Discussion & Future Research

e On Model Utility: Flash Attention matched Baseline, while Sliding Window,

Attention Sink saw reduced performance across downstream tasks.

o Modifying attention mechanisms leads to different points of failure in
each model. In Paraphrase Detection, Baseline and FlashAttention have
balanced false positives/negatives, but Attention Sink was more prone
to false positives. Likely because questions have similar beginning

structures, and Attention Sink pays higher attention to earlier tokens.
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On Model Runtime: Flash Attention has the greatest speedup, while Sliding
Window and Attention Sink saw smaller speedups.
o Demonstrated that reducing computation complexity is less effective
than reducing 10 bottleneck at speeding up attention.
Tradeoffs: Baseline maintains best performance but much slower. Sliding
Window, Attention Sink provide speedup at significant performance cost.
o FlashAttention best mitigates tradeoff, achieving higher speedups in
training/evaluation time with minimal drop in model utility
Future Research: investigate tradeoffs of alternate attention mechanisms
(including kernel methods) and on other downstream tasks

Experiments

e Data:

o Sentiment Analysis: SST contains 12k single-sentence
movie reviews labeled on a five-point scale. CFIMDB
contains 2k multi-sentence reviews with binary labels.

o Paraphrase Detection: 400k Quora question pairs with
binary labels.

o Sonnet Generation: Based on 154 14-line sonnets
written by Shakespeare.

Performance: Sentiment and Paraphrase is based on
accuracy; Sonnet is based on CHRF.

o Additional Metrics (for binary classification): F1 Score,
Precision, Recall, and Confusion Matrices

Efficiency: Training and Evaluation Time
Experiment Environment: NVIDIA L4 GPU from GCP
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