
Center of Attention
Investigating the Effect of Alternate Attention Mechanisms on Efficiency and Model Utility

James Ding1, Anisha Palaparthi1, Hollie Zheng1

Stanford University

x
x +

● LLMs and Transformer Models have increased in popularity

● Rely on self-attention to achieve state-of-the-art

performance, but this operation creates a bottleneck in

runtime due to quadratic complexity
● (Dense) Self Attention: Allows model to extract

dependencies and relevant info from tokens through a

scaled-dot-product calculation - runs in O(n2)!
● Accelerating Attention: Three approaches to accelerating

attention:

○ Sparse Attention*: Reduce O(n2) to polynomial complexity

by using select token to compute attention

○ Kernel Methods: Replace softmax with a feature map

approx. to reduce computational complexity

○ Hardware Optimization*: Leverage hardware parallelism

to reduce the runtime of dense self-attention computation

● Explore alternate attention mechanisms that reduce

computational complexity (Sliding Window Attention,
Attention Sink) or optimize hardware for attention

computation (FlashAttention)

● Investigate the tradeoffs between model performance and

runtime in 3 downstream tasks

● FlashAttention best mitigates these tradeoffs with high
performance and low runtime compared to the baseline

Project Overview Discussion & Future ResearchMethods

Dataset and Metrics
● Data:

○ Sentiment Analysis: SST contains 12k single-sentence

movie reviews labeled on a five-point scale. CFIMDB

contains 2k multi-sentence reviews with binary labels.

○ Paraphrase Detection: 400k Quora question pairs with

binary labels.
○ Sonnet Generation: Based on 154 14-line sonnets

written by Shakespeare.

● Performance: Sentiment and Paraphrase is based on

accuracy; Sonnet is based on CHRF.

○ Additional Metrics (for binary classification): F1 Score,

Precision, Recall, and Confusion Matrices

● Efficiency: Training and Evaluation Time

● Experiment Environment: NVIDIA L4 GPU from GCP

● Flash Attention: Address memory bottleneck in long sequences by minimizing costly

off-chip access through an IO-aware approach using Tiling and Recomputation. Relies on

computation of additional statistics m(x), l(x)

● Sliding Window: Divides K and Q matrices into chunks. Each chunk is multiplied with its

corresponding chunk to produce a banded matrix.

● Attention Sink: Similar to Sliding Window, but includes first few tokens for offloading

attention (these have high attention scores when current token has nothing to attend to).

Experiments

● On Model Utility: Flash Attention matched Baseline, while Sliding Window,

Attention Sink saw reduced performance across downstream tasks.

○ Modifying attention mechanisms leads to different points of failure in

each model. In Paraphrase Detection, Baseline and FlashAttention have

balanced false positives/negatives, but Attention Sink was more prone

to false positives. Likely because questions have similar beginning

structures, and Attention Sink pays higher attention to earlier tokens.

● On Model Runtime: Flash Attention has the greatest speedup, while Sliding

Window and Attention Sink saw smaller speedups.
○ Demonstrated that reducing computation complexity is less effective

than reducing IO bottleneck at speeding up attention.

● Tradeoffs: Baseline maintains best performance but much slower. Sliding

Window, Attention Sink provide speedup at significant performance cost.

○ FlashAttention best mitigates tradeoff, achieving higher speedups in

training/evaluation time with minimal drop in model utility

● Future Research: investigate tradeoffs of alternate attention mechanisms

(including kernel methods) and on other downstream tasks

Baseline FlashAttention Sliding Window Attention Sink

