

Center of Attention

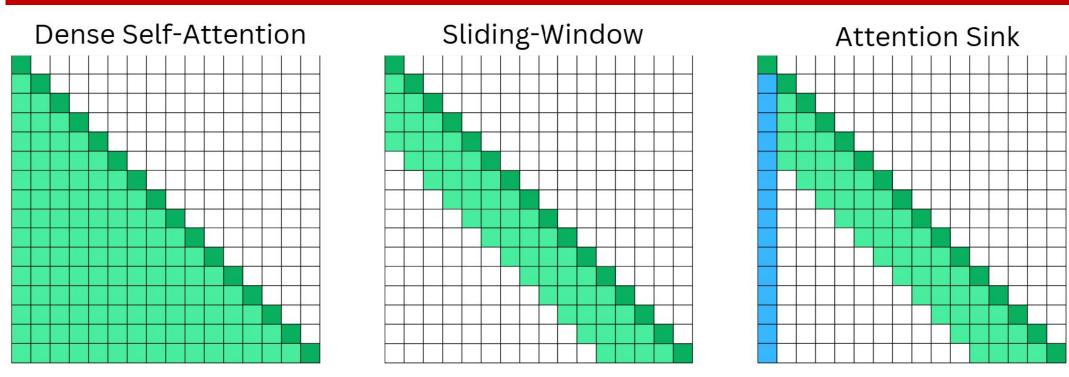
Investigating the Effect of Alternate Attention Mechanisms on Efficiency and Model Utility

James Ding¹, Anisha Palaparthi¹, Hollie Zheng¹
Stanford University

Project Overview

- LLMs and Transformer Models have increased in popularity
- Rely on self-attention to achieve state-of-the-art performance, but this operation creates a **bottleneck** in runtime due to **quadratic complexity**
- (Dense) Self Attention: Allows model to extract dependencies and relevant info from tokens through a scaled-dot-product calculation runs in O(n²)!
- Accelerating Attention: Three approaches to accelerating attention:
 - Sparse Attention*: Reduce O(n²) to polynomial complexity by using select token to compute attention
- Kernel Methods: Replace softmax with a feature map approx. to reduce computational complexity
- Hardware Optimization*: Leverage hardware parallelism to reduce the runtime of dense self-attention computation
- Explore alternate attention mechanisms that reduce computational complexity (Sliding Window Attention, Attention Sink) or optimize hardware for attention computation (FlashAttention)
- Investigate the **tradeoffs** between **model performance** and **runtime** in 3 downstream tasks
- FlashAttention best mitigates these tradeoffs with high performance and low runtime compared to the baseline

Methods



• Flash Attention: Address memory bottleneck in long sequences by minimizing costly off-chip access through an IO-aware approach using Tiling and Recomputation. Relies on computation of additional statistics m(x), l(x)

$$m(x) = m([x^{(1)} \ x^{(2)}]) = \max(m(x^{(1)}), m(x^{(2)})), \quad f(x) = \left[e^{m(x^{(1)}) - m(x)} f(x^{(1)}) \quad e^{m(x^{(2)}) - m(x)} f(x^{(2)})\right],$$

$$\ell(x) = \ell([x^{(1)} \ x^{(2)}]) = e^{m(x^{(1)}) - m(x)} \ell(x^{(1)}) + e^{m(x^{(2)}) - m(x)} \ell(x^{(2)}), \quad \text{softmax}(x) = \frac{f(x)}{\ell(x)}.$$

• **Sliding Window**: Divides K and Q matrices into **chunks**. Each chunk is multiplied with its corresponding chunk to produce a banded matrix.

$$\mathbf{K}_{i} = \mathbf{K}[:,:,iw:(i+2)w,:] \qquad \mathbf{Q}_{i} = \mathbf{Q}[:,:,iw:i(i+2)w,:] \qquad \forall i \in \left\{0,\ldots,\left\lfloor\frac{s}{w}\right\rfloor - 1\right\} \quad \mathbf{A}_{i} = \mathbf{Q}_{i}\mathbf{K}_{i}^{\mathsf{T}} \qquad \forall i \in \left\{0,\ldots,\left\lfloor\frac{s}{w}\right\rfloor - 1\right\}$$

$$\mathbf{A}[:,:,iw:(i+2)w,iw:(i+2)w] = \mathbf{A}_{i}, \mathbf{A}[:,:,j,k] = 0 \text{ otherwise}$$

• Attention Sink: Similar to Sliding Window, but includes first few tokens for offloading attention (these have high attention scores when current token has nothing to attend to).

$$\mathbf{S_i} = \mathbf{Q_0} \mathbf{K}_i^{\mathsf{T}} \quad \mathbf{A}[:,:,iw:(i+2)w,iw:(i+2)w] = \mathbf{A}_i, \mathbf{A}[:,:,iw:(i+2)w,0:2w] = \mathbf{S}_i$$

Discussion & Future Research

- On Model Utility: Flash Attention matched Baseline, while Sliding Window,
 Attention Sink saw reduced performance across downstream tasks.
 - Modifying attention mechanisms leads to different points of failure in each model. In Paraphrase Detection, Baseline and FlashAttention have balanced false positives/negatives, but Attention Sink was more prone to false positives. Likely because questions have similar beginning structures, and Attention Sink pays higher attention to earlier tokens.

- On Model Runtime: Flash Attention has the greatest speedup, while Sliding Window and Attention Sink saw smaller speedups.
 - Demonstrated that reducing computation complexity is less effective than reducing IO bottleneck at speeding up attention.
- Tradeoffs: Baseline maintains best performance but much slower. Sliding
 Window, Attention Sink provide speedup at significant performance cost.
 - FlashAttention best mitigates tradeoff, achieving higher speedups in training/evaluation time with minimal drop in model utility
- Future Research: investigate tradeoffs of alternate attention mechanisms (including kernel methods) and on other downstream tasks

Dataset and Metrics

- Data:
 - Sentiment Analysis: SST contains 12k single-sentence movie reviews labeled on a five-point scale. CFIMDB contains 2k multi-sentence reviews with binary labels.
 - Paraphrase Detection: 400k Quora question pairs with binary labels.
 - Sonnet Generation: Based on 154 14-line sonnets written by Shakespeare.
- **Performance**: Sentiment and Paraphrase is based on accuracy; Sonnet is based on CHRF.
 - Additional Metrics (for binary classification): F1 Score,
 Precision, Recall, and Confusion Matrices
- **Efficiency:** Training and Evaluation Time
- Experiment Environment: NVIDIA L4 GPU from GCP

Experiments

