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● LLMs and Transformer Models have increased in popularity

● Rely on self-attention to achieve state-of-the-art 

performance, but this operation creates a bottleneck in 

runtime due to quadratic complexity
● (Dense) Self Attention: Allows model to extract 

dependencies and relevant info from tokens through a 

scaled-dot-product calculation -  runs in O(n2)!  
● Accelerating Attention: Three approaches to accelerating 

attention:

○ Sparse Attention*: Reduce O(n2) to polynomial complexity 

by using select token to compute attention

○ Kernel Methods: Replace softmax with a feature map 

approx. to reduce computational complexity

○ Hardware Optimization*: Leverage hardware parallelism 

to reduce the runtime of dense self-attention computation

● Explore alternate attention mechanisms that reduce 

computational complexity (Sliding Window Attention, 
Attention Sink) or optimize hardware for attention 

computation (FlashAttention)

● Investigate the tradeoffs between model performance and 

runtime in 3 downstream tasks

● FlashAttention best mitigates these tradeoffs with high 
performance and low runtime compared to the baseline
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Dataset and Metrics
● Data:

○ Sentiment Analysis: SST contains 12k single-sentence 

movie reviews labeled on a five-point scale. CFIMDB 

contains 2k multi-sentence reviews with binary labels. 

○ Paraphrase Detection: 400k Quora question pairs with 

binary labels.
○ Sonnet Generation: Based on 154 14-line sonnets 

written by Shakespeare.

● Performance: Sentiment and Paraphrase is based on 

accuracy; Sonnet is based on CHRF. 

○ Additional Metrics (for binary classification): F1 Score, 

Precision, Recall, and Confusion Matrices

● Efficiency: Training and Evaluation Time

● Experiment Environment: NVIDIA L4 GPU from GCP

● Flash Attention: Address memory bottleneck in long sequences by minimizing costly 

off-chip access through an IO-aware approach using Tiling and Recomputation. Relies on 

computation of additional statistics m(x), l(x)

● Sliding Window: Divides K and Q matrices into chunks. Each chunk is multiplied with its 

corresponding chunk to produce a banded matrix.

● Attention Sink: Similar to Sliding Window, but includes first few tokens for offloading 

attention (these have high attention scores when current token has nothing to attend to).

Experiments

● On Model Utility: Flash Attention matched Baseline, while Sliding Window, 

Attention Sink saw reduced performance across downstream tasks. 

○ Modifying attention mechanisms leads to different points of failure in 

each model. In Paraphrase Detection, Baseline and FlashAttention have 

balanced false positives/negatives, but Attention Sink was more prone 

to false positives. Likely because questions have similar beginning 

structures, and Attention Sink pays higher attention to earlier tokens. 

● On Model Runtime: Flash Attention has the greatest speedup, while Sliding 

Window and Attention Sink saw smaller speedups. 
○ Demonstrated that reducing computation complexity is less effective 

than reducing IO bottleneck at speeding up attention. 

● Tradeoffs: Baseline maintains best performance but much slower. Sliding 

Window, Attention Sink provide speedup at significant performance cost. 

○ FlashAttention best mitigates tradeoff, achieving higher speedups in 

training/evaluation time with minimal drop in model utility

● Future Research: investigate tradeoffs of alternate attention mechanisms 

(including kernel methods) and on other downstream tasks
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