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Introduction Results
● Autonomous driving through deep learning has 

attracted substantial interest in recent years

● End-to-end autonomous driving replaces 

complex, multi-module pipelines with a single 

neural network that directly predicts a vehicle’s 

future trajectory. By fusing past motion states, 

current onboard camera images, and a high-level 

driving intent, our approach:

○ Simplifies integration.

○ Improves generalization to rare “long-tail” 

scenarios.

○ Ensures platform agnosticism, adapting 

readily across different vehicle platforms.

● Inputs: Each sample consists of 3 RGB views 

(front, front-left, front-right), 16-step past 

vehicle dynamics over 4s @ 4 Hz, driving intent: 

"go left", "go right", "go straight", or "unknown"

● Prediction: 20 future (x, y) positions over 5s @ 4 

Hz; preprocessing of data includes CLIP 

normalization, random crop, and color jitter: 

Resize → crop → normalize (CLIP stats)

Conclusion & Future Work

Methodology

● Conclusion: Our model architecture successfully outperforms baseline 

no-vision LSTM, generalizes well to plan trajectories in new scenarios, and 

shows potential for further improvement with more data/compute

● Unified Vision–Language Encoding: Replace frozen Swin and MiniLM 

modules with a joint VLM (e.g., Dolphins) to learn shared embeddings for 

images and intent, improving cross‐modal alignment.

● Diffusion-Based Trajectory Generation: Try adopting  conditional 

diffusion models on fused visual, motion, and intent features to capture 

uncertainty and produce diverse, multimodal future paths.

~49.5M parameters, trained on Smooth L1 loss for robustness in noisy, low-data regimes.
Data & Features

(1) Vision Backbone - A lightweight Swin 

Transformer pre-trained on ImageNet and 

fine-tuned on dataset, encodes the 3 images 

into a 256-dimensional scene embedding. 

(2) Dynamics Encoder: Two LSTMs (for position 

and kinematics) encode motion history, 

followed by an MLP to produce a 

64-dimensional dynamics embedding.

(3) Intent Encoder: Natural language prompts (e.g., 

“Go left while avoiding obstacles”) are embedded 

using MiniLM, passed through an MLP to yield a 

16-dim intent representation 

(4) Fusion Module: The three embeddings are 

concatenated and passed through a 2-layer MLP to 

regress a 20×2 trajectory (x, y coordinates at 4Hz for 

5 seconds). 

Experiments
MSE Loss Average Displacement Error (ADE) Metric

Smooth L1 (Huber) Loss
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Summary of Experiments: 

Train/Val/Test: 1k train samples (250 for model  

development exps), 96 val, 263 test samples


