

This is The Way: Vision-Based End-to-End Planning for Autonomous Driving

Anisha Palaparthi¹, Arpit Dwivedi¹, Purushottam Mani¹

anishapv@stanford.edu, dwivedi7@stanford.edu, purush@stanford.edu

Stanford **Computer Science**

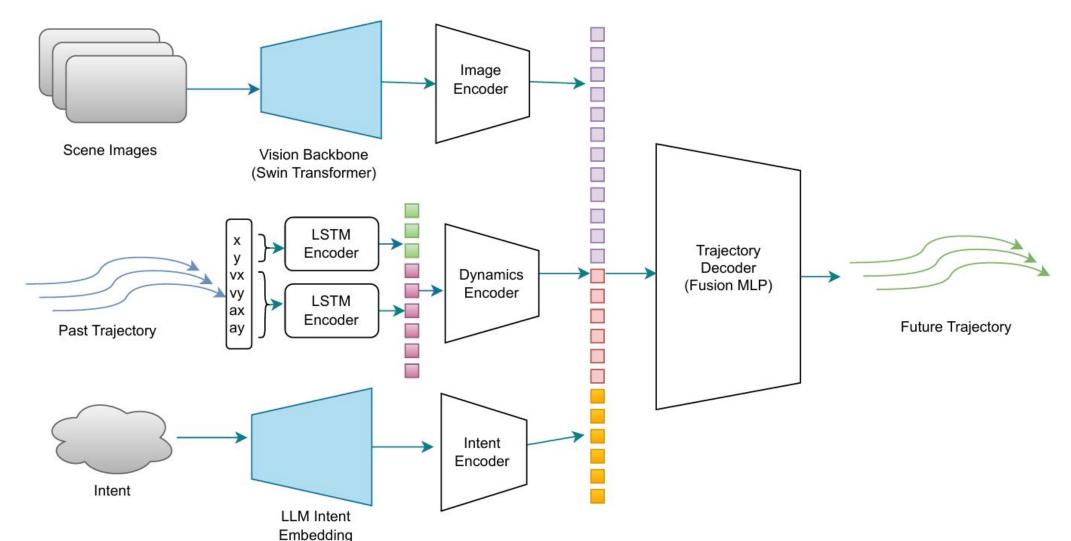
Introduction

- Autonomous driving through deep learning has attracted substantial interest in recent years
- End-to-end autonomous driving replaces complex, multi-module pipelines with a single neural network that directly predicts a vehicle's future trajectory. By fusing past motion states, current onboard camera images, and a high-level driving intent, our approach:
 - Simplifies integration.
 - o Improves generalization to rare "long-tail" scenarios.
 - Ensures platform agnosticism, adapting readily across different vehicle platforms.

Data & Features

- Inputs: Each sample consists of 3 RGB views (front, front-left, front-right), 16-step past vehicle dynamics over 4s @ 4 Hz, driving intent: "go left", "go right", "go straight", or "unknown"
- Prediction: 20 future (x, y) positions over 5s @ 4 Hz; preprocessing of data includes CLIP normalization, random crop, and color jitter: Resize \rightarrow crop \rightarrow normalize (CLIP stats)

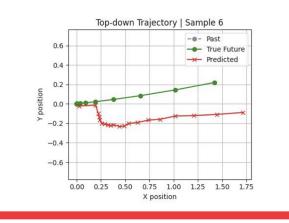
Methodology



~49.5M parameters, trained on Smooth L1 loss for robustness in noisy, low-data regimes.

- (1) Vision Backbone A lightweight Swin Transformer pre-trained on ImageNet and fine-tuned on dataset, encodes the 3 images into a 256-dimensional scene embedding.
- (2) **Dynamics Encoder**: Two LSTMs (for position (4) **Fusion Module**: The three embeddings are and kinematics) encode motion history, followed by an MLP to produce a 64-dimensional dynamics embedding.
- (3) Intent Encoder: Natural language prompts (e.g., "Go left while avoiding obstacles") are embedded using MiniLM, passed through an MLP to yield a 16-dim intent representation
- concatenated and passed through a 2-layer MLP to regress a 20×2 trajectory (x, y coordinates at 4Hz for 5 seconds).

Results



Experiments

MSE Loss

$$L_{\text{MSE}} = \frac{1}{N} \sum_{i=1}^{N} \left[(t_{i,x} - \hat{t}_{i,x})^{2} + (t_{i,y} - \hat{t}_{i,y})^{2} \right]$$

Smooth L1 (Huber) Loss

$$L_{ ext{SmoothL1}} = rac{1}{N} \sum_{i=1}^{N} \left[ext{smooth}_{ ext{L1}} ig(t_{i,x} - \hat{t}_{i,x} ig)
ight.$$
 $+ ext{smooth}_{ ext{L1}} ig(t_{i,y} - \hat{t}_{i,y} ig)
ight]$ $ext{smooth}_{ ext{L1}} (r) = egin{cases} 0.5r^2, & ext{if } |r| < 1 \ |r| - 0.5, & ext{otherwise} \end{cases}$

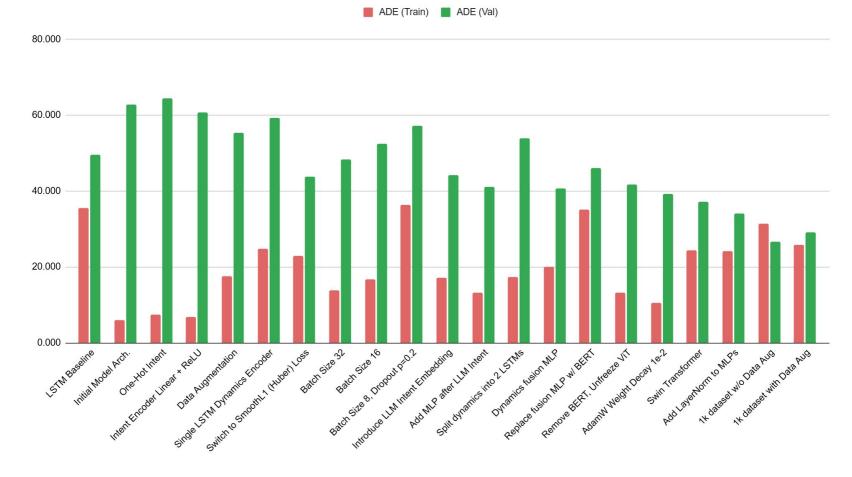
Average Displacement Error (ADE) Metric

$$ADE(t, \hat{t}) = \frac{1}{N} \sum_{i=1}^{N} \left[\left(t_{i,x} - \hat{t}_{i,x} \right)^{2} + \left(t_{i,y} - \hat{t}_{i,y} \right)^{2} \right]$$

Train/Val/Test: 1k train samples (250 for model development exps), 96 val, 263 test samples

Summary of Experiments:

	Train Loss	Val Loss	ADE-T	ADE-V
Baseline	1.235	4.198	35.600	49.521
Our Model	0.606	0.663	25.937	29.237
Final A	ADE of M	Todel on '	Test Set: 26	.96



Conclusion & Future Work

- Conclusion: Our model architecture successfully outperforms baseline no-vision LSTM, generalizes well to plan trajectories in new scenarios, and shows potential for further improvement with more data/compute
- **Unified Vision-Language Encoding:** Replace frozen Swin and MiniLM modules with a joint VLM (e.g., Dolphins) to learn shared embeddings for images and intent, improving cross-modal alignment.
- Diffusion-Based Trajectory Generation: Try adopting conditional diffusion models on fused visual, motion, and intent features to capture uncertainty and produce diverse, multimodal future paths.