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e Inputs: Each sample consists of 3 RGB views (1) Vision Backbone - A lightweight Swin (3) Intent Encoder: Natural language prompts (e.g., T e
(front, front-left, front-right), 16-step past Transformer pre-trained on ImageNet and “Go left while avoiding obstacles”) are embedded N e
vehicle dynamics over 4s @ 4 Hz, driving intent: fine-tuned on dataset, encodes the 3 images using MiniLM, passed through an MLP to yield a | i
"go left’, "goright’, "go straight’, or "unknown" into a 256-dimensional scene embedding. 16-dim intent representation B s il i

e Prediction: 20 future (x, y) positions over 5s @ 4
Hz; preprocessing of data includes CLIP
normalization, random crop, and color jitter:
Resize — crop — normalize (CLIP stats)

(2) Dynamics Encoder: Two LSTMs (for position (4) Fusion Module: The three embeddings are
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and kinematics) encode motion history, concatenated and passed through a 2-layer MLP to J o '
followed by an MLP to produce a regress a 20x2 trajectory (x, y coordinates at 4Hz for
64-dimensional dynamics embedding. 5 seconds).
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Smooth L1 (Huber) Loss : oo no-vision LSTM, generalizes well to plan trajectories in new scenarios, and
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uncertainty and produce diverse, multimodal future paths.

References: [1] M. Bojarski et al., "End to End Learning for Self-Driving Cars,, 2016 [2] Waymo LLC, "Waymo Open Dataset: Vision-Based End-to-End Driving Challenge (2025)," [3] Loshchilov and F. Hutter. Decoupled weight decay regularization, 2017



