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Abstract

End-to-end autonomous driving has attracted substantial in-
terest in recent years. In particular, our work focuses on pre-
dicting the vehicle’s future trajectory, based on the past dy-
namics information, visual input of the current timestep from
onboard cameras, and a specified driving intent. Much of the
existing work focuses on leveraging modular deep neural net-
works to build end-to-end architectures on typical driving sce-
narios. However, it remains an open question on how to ad-
dress the end-to-end driving problem in uncommon or unex-
pected situations in which the vehicle must adapt to its sur-
rounding conditions quickly and without harming its environ-
ment. In this work, we aim design a model architecture that
explores this problem on the Waymo Driving Dataset. Our ar-
chitecture takes advantage of transformer-based vision models,
Long Short-Term Memory based encoders, and insights from
from language models to achieve a significant performance in-
crease over the baseline in a low data regime. Our results sug-
gest that this architecture not only allows the model to general-
ize well to unseen data, but also has the potential to realize even
better performances with more compute resources and data.

1. Introduction

Autonomous driving technology has seen rapid advancement
over the past decade. The prevailing approach in the industry re-
lies on a modular architecture, dividing the driving pipeline into
distinct components such as perception, localization/mapping,
prediction, planning, and control. This decomposition offers a
practical balance between performance, safety, and explainabil-
ity, enabling commercial success in Level 2 (partial automation)
to Level 3 (periodically autonomous) driver assistance systems.

However, despite progress in lower levels of autonomy, the
widespread deployment of higher-level (L4+, with limited or no
human control) autonomous systems remains limited. Several
challenges contribute to this gap. First, the complexity of the
modular pipeline—often comprising twenty or more intercon-
nected modules—introduces significant overhead. Each mod-
ule operates with limited compute resources, and the large num-
ber of interfaces between them hampers seamless information
flow and joint optimization. Potential conflicts between local
and global objectives are an additional concern.

Second, traditional architectures often suffer from poor gen-
eralization. Handcrafted heuristics and narrowly trained models

struggle to handle rare and unexpected driving scenarios, what
we call ”long-tail scenarios”. Over time, the accumulation of
brittle, case-specific solutions can make the system increasingly
difficult to maintain and scale.

Third, these systems are typically tightly coupled to specific
software and hardware platforms, making it difficult to adapt
them across different vehicle models/platforms.

In light of these limitations, we explore an end-to-end ap-
proach to autonomous driving that simplifies the architec-
ture while aiming to enhance generalization and adaptability.
Specifically, our system predicts the vehicle’s future trajectory
over a 5-second horizon, based on:

• the vehicle’s past 4-second trajectory sampled at 4 Hz (a
(16, 6) sequence of (x, y, vx, vy, ax, ay)),

• 3 front-facing camera images at the current timestep
• a high-level driving intent

(”go left”, ”go straight”, ”go right”, or ”unknown”).

The model outputs a predicted trajectory over the next 5 sec-
onds at 4 Hz, represented as a (20, 2) sequence of future x-y
positions. Furthermore, given the size of the data records (each
record contains up 3 GB of data), we will develop our model
under a low-data regime; this further motivates the problem of
designing such an end-to-end approach without as much mem-
ory and computational resources.

This end-to-end formulation offers several advantages:

• Simplified Architecture: The entire decision-making
pipeline is encapsulated in a single deep neural network
module, reducing system complexity and increasing in-
tegration. This unified structure enables end-to-end op-
timization, avoiding the challenges of reconciling poten-
tially conflicting local objectives across modules. As a re-
sult, training becomes more streamlined and globally co-
herent, since all components are optimized together under
a single loss function.

• Improved Generalization: By incorporating multi-modal
learning and leveraging the reasoning capabilities of lan-
guage models and transformer-based vision models, the
system is better equipped to handle the long-tail scenarios.

• Enhanced Adaptability: Since our model outputs pre-
dicted trajectories rather than direct control commands, it
can be more easily deployed across different vehicles—
each of which can use its own low-level controller to track
the predicted path.
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2. Related Work

Early deep models used recurrent networks to model mo-
tion. For example, Zhu et al. (2019) introduced an Atten-
tive Recurrent Neural Process (ARNP) [18], which combines
RNNs with neural processes to predict a probability distribution
over a vehicle’s future path given its past trajectory. Similarly,
Kim et al. (2021) developed a driving-style–conditioned CVAE
[6]: a DeepConvLSTM first classifies the driver’s style from
in-vehicle sensor data, and then a CVAE generates diverse fu-
ture trajectories conditioned on that style and the recent motion
history. These models capture agent dynamics and multi-modal
futures via learned sequence models.

More recently, transformer and attention models have domi-
nated motion forecasting by treating trajectories like sequences.
For instance, Waymo’s MotionLM [13] discretizes agent tra-
jectories into tokens and applies a standard language-modeling
objective. It autoregressively generates joint, multi-agent fu-
ture sequences in a single pass, achieving state-of-the-art results
on the Waymo Open Motion Dataset. Such transformer-based
methods excel at modeling long-range interactions and multi-
modal futures, though they typically require large training sets
and pre-defined motion tokens. Notably, MotionLM focuses on
agent dynamics and interactions, not on raw sensory images.

Another line of work explicitly incorporates structured map
context. VectorNet [3] (Gao et al., 2020) represents both agents
and map elements as polylines in a hierarchical graph, avoid-
ing the lossy rasterization of images. By operating directly on
vectorized HD maps and trajectories, it achieves competitive
or better performance than CNN-based approaches on bench-
marks like Argoverse. Likewise, MultiPath++ [15] (Varadara-
jan et al., 2022) encodes road lane geometries and agent states
as compact polylines and fuses them via a multi-context gat-
ing mechanism. This context-aware fusion of map and motion
information yields state-of-the-art accuracy on both the Argov-
erse and Waymo motion challenges. These vectorized models
leverage rich, interpretable map features to improve prediction.

In contrast, end-to-end vision-based methods predict trajec-
tories directly from raw images, learning scene understand-
ing implicitly. ChauffeurNet [1], for instance, predicts ego-
vehicle trajectories using surround-view cameras and a high-
level navigational command (e.g., ”turn left”). However, its
pipeline relies on a pre-processed top-down semantic represen-
tation that includes rendered road layouts, objects, and traffic
signals—making it only partially end-to-end. Our setup shares
the same prediction objective but removes this intermediate per-
ception step, working directly from RGB images, motion his-
tory, and natural language intent. Advances in transformer-
based vision backbones have made this design feasible: Swin
Transformer [8], a hierarchical ViT pretrained on ImageNet, has
shown strong performance on diverse vision tasks. We adopt
Swin to extract spatial and semantic features from front-facing
camera views, enabling our model to leverage fine-grained
scene cues such as lane markings and dynamic actors without
relying on external maps or perception modules.

A more novel line of work incorporates textual or intent in-
formation into prediction. VisionTrap [12] adds textual scene
descriptions (generated by vision-language models) as super-
visory signals to guide a trajectory predictor. In their model,

“textual descriptions generated by a VLM and refined by an
LLM” help teach the model which semantic cues to focus on.
Another approach, Trajectory-LLM [17], goes further by treat-
ing language as input: it feeds short text descriptions of multi-
agent interactions (e.g. “cars at stop sign turning right”) into
an LLM, which then produces corresponding trajectories. In
effect, Trajectory-LLM uses language models to synthesize re-
alistic training trajectories from semantic prompts. These works
show that high-level semantics (whether generated or hand-
crafted) can guide motion prediction. Our method also lever-
ages language, but in a simpler way: we embed a small set of
natural-language intents (“go straight”, “turn left”, etc.) via a
pretrained MiniLM, producing a dense intent vector. To our
knowledge, few prior works have used natural language to en-
code driver intent in this manner.

In summary, prior trajectory prediction models can be
broadly grouped into several categories. RNN and VAE-based
approaches [18, 6] effectively model agent dynamics and in-
teractions, while transformer-based models [13] offer improved
capacity for handling complex, multi-agent scenarios—though
they often overlook visual semantics. Map- and image-based
methods [15, 3] incorporate environmental context through
structured vector inputs or raw pixels, enabling stronger scene
understanding. Vision-based approaches, such as Chauffeur-
Net [1], leverage raw scene imagery and privileged represen-
tations to predict motion plans, and are notable for reducing
the need for extensive real-world data through effective use of
imitation learning and synthetic supervision. More recently,
language-augmented models [12] have begun to bridge vision
and semantics, introducing high-level reasoning and improv-
ing interpretability, though this area remains relatively under-
explored. Compared to these, our approach uniquely fuses a
vision backbone (Swin) with RNN-encoded dynamics and a
language-model-based intent embedding.

In our view, the cleverest recent advances include
models that fuse multiple contexts (anchors + maps
in MultiPath++[15], token-based sequence modeling in
MotionLM[13]) and vision-language models like VisionTrap
that exploit textual semantics [12].

Overall, the field has rapidly shifted to deep learning so-
lutions; virtually all top approaches in recent challenges (e.g.
Waymo, Argoverse) are learned, with minimal “by-hand”
heuristics left, reflecting the power of these modern methods.

3. Dataset and Features

The dataset used in this project is a curated subset of the
Waymo Open Dataset [9], specifically selected for the task of
intent-aware vehicle trajectory forecasting. Given the substan-
tial scale of the full dataset—which exceeds the computational
resources available for this project—we extracted a manageable
3GB subset, consisting of 1000 training samples, 100 validation
samples, and 263 test samples. Each sample includes:

• Three RGB images from the front-facing cameras (front,
front-left, and front-right), capturing the forward driving
context relevant for trajectory prediction.

• 4 seconds of past vehicle dynamics, sampled at 4 Hz (16
steps), with each timestep providing six features: position
(x, y), velocity (vx, vy), and acceleration (ax, ay).



Figure 1: Example input showing the three front-facing camera
views (front, front-left, front-right) along with the associated
driving intent annotation.

• A high-level driving intent, represented as a one-hot en-
coded vector over four classes: ”go straight”, ”turn left”,
”turn right”, and ”unknown”.

• A target output consisting of 20 future trajectory waypoints
over the next 5 seconds, capturing the ego vehicle’s motion
in 2D space (x, y).

Due to computational limitations, the model uses only the
three front-facing camera views, excluding side and rear per-
spectives. An example input image is shown in Figure 1.

Several preprocessing steps were applied to prepare the data
for modeling. The raw images were first converted into ten-
sors and restructured into the [batch size, cameras, channels,
height, width] format to support multi-view input from front-
facing cameras. The intent labels, originally stored as inte-
ger class indices (ranging from 0 to 3), were converted into
one-hot encoded vectors to facilitate compatibility with neu-
ral network architectures. For models leveraging pretrained vi-
sion encoders—we applied the standardized image preprocess-
ing pipeline used during encoder’s training. This included re-
sizing images while maintaining aspect ratio, performing a cen-
ter crop to 224×224 pixels, and normalizing pixel values using
CLIP’s mean and standard deviation statistics. These transfor-
mations ensure the input distribution matches the expectations
of the pretrained model, enabling more effective feature extrac-
tion.

To further enhance generalization, we implemented a data
augmentation pipeline with commonly used visual perturba-
tions—random resized crops and color jitter. This augmenta-
tion strategy improves robustness to visual variations. Alto-
gether, this comprehensive preprocessing strategy ensured the
dataset was well-conditioned for our multimodal deep learning
task that integrate visual, temporal, and semantic inputs to ac-
curately predict future vehicle trajectories.

4. Methodology
We have designed a model architecture that takes as input the

past trajectory dynamics, 3 images from the vehicle’s cameras
at the end of this trajectory, and an intent: to go straight, go left,
or go right (or unknown). The model then predicts the future
trajectory of the vehicle’s position as output.

More specifically, we can define the past trajectory dynamics
as T ∈ R16×6. There are 16 previous timesteps in the data, and
for each timestep where are given the x and y position, velocity,
and acceleration of the vehicle. We can define the three RGB
images, each of 224x224 pixels, as X1,X2,X3 ∈ R224×224×3.
Finally, we can define the intent as I ∈ {0, 1, 2, 3}. The sum-
mary of inputs to the model is therefore given by:

T ∈ R16×6,X1,X2,X3 ∈ R224×224×3, I ∈ {0, 1, 2, 3}

The output is 20 timesteps of the future trajectory’s position,
namely Tfuture ∈ R20×2.

The model architecture will comprise of 4 modules: (1) vi-
sion backbone, (2) dynamics encoder, (3) intent embedding and
encoder, and (4) a final fusion layer. The vision backbone mod-
ule takes X1,X2,X3 as input and outputs an image feature
vector Fimg ∈ RD. The dynamics module takes as input T and
outputs an dynamics encoding Fdyn ∈ RL. The intent module
takes as input I and outputs an intent encoding Fint ∈ RE . The
final fusion layer takes three outputs described above concate-
nated together as input F = [FimgFdynFint] ∈ RD+L+E and
outputs the predicted future trajectory Tfuture ∈ R20×2. No-
tice that D,L,E are hyperparameters of the model architecture
and are chosen to be D = 256, L = 64, E = 16.

Figure 2 illustrates this model architecture, which has a
model capacity of 49.5 M parameters in total. To develop this
model, we incrementally built up the various components and
evaluated performance when trained on a subset of the dataset.
These 20 versions of the model architecture and their experi-
mental results are documented in Table 1. Below, we will dis-
cuss in further depth each of these components of the final ar-
chitecture.

4.1. Vision Backbone

The first module of the model architecture is a vision back-
bone that provides encodes the 3 camera images from the front-
left, front, and front-right of the vehicle into a D-dimension vec-
tor. Noting the high performance of transformer-based vision
models in recent years, we opt to use a vision transformer for
the purposes of the vision backbone. However, given the small
dataset we are working with, we use a pre-trained vision trans-
former model (pre-trained on ImageNet [2]) from which we re-
move the classification head, and we finetune the model on our
driving dataset by freezing the weights of the transformer model
except for the final 2 transformer blocks and the normalization
layers. Finally, we concatenate the R-dimensional image fea-
tures (where R is the transformer output dimension) for the 3
input images extracted by the vision transformer and apply a
feedforward layer to encode the 3R-dimensional image features
into a D-dimension image encoding.

For the vision transformer, we considered 2 such variants
pre-trained on ImageNet: a tradition tiny ViT with a patch size
of 16 (approximately 9.7M parameters) and a small Swin Trans-
former with a patch size of 4 and window size of 7 (with ap-
proximately 49.5M parameters). While the ViT provided faster
training and evaluation, it focuses more on global understand-
ing of images. The Swin Transformer, on the other hand, is
more equipped to extract low-level feature relationships, which
is particularly relevant for our task since the images contain im-
portant low-level features such as stop signs, lane markings, etc.
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Figure 2: Model Architecture

4.2. Dynamics Encoder

To encode the dynamics of the past trajectory data (which,
we can recall, includes x,y position, velocity, and acceleration
for the last 16 timesteps), we first split these features into two
separate vectors, one containing the positional information and
other containing the kinematics information of velocity and ac-
celeration. We then train two LSTM models as the positional
and kinematics encoders, each of which provides final hidden
state (an L-dimension vector) that encodes the past trajectories.
The LSTM’s have a hyperparamter hidden state size, which we
choose to be 32. Finally, we have a final 2-layer MLP layer that
fuses the LSTM outputs into a single L-dimension dynamics en-
coding. The MLP also has a hidden layer size hyperparameter,
which is set to 128 for our purposes.

4.3. Intent Embedding and Encoder

Recall that the intent can take on one of 4 values. While
we originally embedded the intent as a one-hot encoded vector,
we also experimented with other embeddings for the intent. In
particular, we map each of the 4 intents to the following natural
language prompts:

1. “Go straight while avoiding obstacles”
2. “Go left while avoiding obstacles”
3. “Go right while avoiding obstacles”
4. “Stop while avoiding obstacles”

We then use a lightweight pre-trained language model -
specifically MiniLM [16], which we chose for its relatively
small model size but still high performance on natural language
tasks. We then find the 384-dimension embeddings for each
of these language prompts, and use this natural language em-
bedding in place of the one-hot encoded intent. Finally, we
use a 2-layer MLP to produce the final intent encoding in an
E-dimensional vector. The MLP also has a hidden layer size
hyperparameter, which is set to 64 for our purposes.

We find that while these intent embeddings were not learned
from the data but rather came from the pretrained language
model, they created a richer embedding for the intent compared
to what a one-hot encoded vector could provide and thereby im-
proved the performance of the model. We see that the language

model’s prior knowledge helps determine a intent embedding
in this zero-shot manner that better encodes the complexities of
each of the intents as a driving task better than a binary one-hot
vector can.

4.4. Fusion Layer

At this point in the model architecture, we have extracted a
D-dimension image feature vector, an L-dimension dynamics
feature vector, and an E-dimension intent encoding. We finally
need to fuse the outputs of these modules to predict the future
trajectory’s x,y position for the next 20 timesteps. To do so, we
apply a final 2-layer MLP (with layer normalization) as a fusion
layer that combines the encodings and outputs the final trajec-
tory. The MLP also has a hidden layer size hyperparameter,
which is set to 128 for our purposes.

4.5. Loss Function

We originally use Mean-Squared Error (MSE) as the loss
function, as this is a standard loss used in trajectory prediction
tasks [4]. The MSE loss between two trajectories, where each
timestep in the trajectory contains an x,y coordinates, is defined
in Eq. (1) below:

LMSE(t, t̂) =
1

N

N∑
i=1

[(
ti,x − t̂i,x

)2
+
(
ti,y − t̂i,y

)2]
(1)

We also explored the use of an alternative loss function, the
Smooth L1 Loss (also known as the Huber Loss, when δ is fixed
to 1) [14].

LSmoothL1 =
1

N

N∑
i=1

[
smoothL1

(
ti,x − t̂i,x

)
+smoothL1

(
ti,y − t̂i,y

)] (2)

smoothL1(r) =

{
0.5r2, if |r| < 1

|r| − 0.5, otherwise
(3)



We can interpret the Smooth L1 loss to be a combination of
L1 loss and the MSE loss (which is equivalent to L2 loss). This
means that while MSE loss may heavily penalize outliers on the
trajectory, the Smooth L1 loss will be less sensitive to these de-
viations and provide a smoother signal for more stable training
and potentially finding better optima. This makes Smooth L1
loss particularly effective in when ground truth trajectories are
noisy, which is especially the case in our scenario since we are
dealing with a small dataset of abnormal driving situations.

We also incorporate early stopping during training, so we
save the highest performing model weights seen throughout the
epochs of training rather than saving the model weights deter-
mined after all epochs are complete.

4.6. Gradient Descent

To learn the weights, we mini-batch gradient descent [5].
Specifically, we use the AdamW optimizer [10], which com-
bines the Adam optimizer with weight decay. We choose the
Adam optimizer for its state-of-the-art performance on optimiz-
ing for weights of neural networks. We also include weight de-
cay as it allows for better generalization - this particularly im-
portant for our task. Because of the low-data regime in which
our model is being trained, the model is prone to overfitting and
the controlled regularization of AdamW allows for generalizing
the model to unseen data while also maintaining stability dur-
ing training so the optimal model weights can be found through
gradient descent. The learning rate, weight decay, and batch
size were tuned as hyperparameters on the validation set.

4.7. Baseline

To determine a baseline to compare our model against, we
want to build a simple model that ignores the visual input and
simply uses T and the intent to predict the future trajectory. To
do so, we will train an LSTM, which we know is well suited
for the task of trajectory prediction. Specifically, the LSTM
will take the past trajectory as input (with an appended one-hot
encoded intent vector to each trajectory timestep). We will then
pass final hidden state to a 2-layer MLP to output the predicted
future trajectory.

5. Experiments
5.1. Setup and Hyperparameters

We select hyperparameters by tuning over the validation set.
We chose to do a single fold given the constraints of train-
ing/evaluation time on our compute resources and size of the
data (for reference, the data provided by Waymo was stored
TFRecords, each of which are approximately 3 GB in size).
The hyperparameters of each individual component are detailed
in sections above. The high-level hyperparameters to note are
the learning rate for gradient descent (chosen to be α = 1e−3),
the batch size (chosen to be 8), weight decay for AdamW opti-
mization (chosen to be λ = 1e− 2), and number of epochs (set
to 200, but with early stopping).

After developing the model architecture, training the model
on the train split, and tuning hyperparameters on the validation
set, we finally run our model on the unseen test set. The training
set has 1000 samples, the validation set has about 100 samples,
and the test set has 263 samples.

5.2. Metrics

In addition to the loss value, the primary metric keep track
of is the Average Displacement Error (ADE) metric [7], as rec-
ommended by Waymo to evaluate the performance of predicted
trajectories. ADE is analagous the L2 error between trajecto-
ries. The loss (MSE or Smooth L1), also serves as a descrip-
tive metric because it provides another measure for the differ-
ence between two trajectories. More specifically, for a given
predicted trajectory t̂ and the ground truth trajectory t over N
timesteps, we can calculate the ADE as shown in Eq. (4) below.
The total ADE across a batch of trajectories is therefore the sum
of the ADE values across all trajectories in the batch.

ADE(t, t̂) =
1

N

N∑
i=1

[(
ti,x − t̂i,x

)2
+

(
ti,y − t̂i,y

)2]
(4)

6. Results and Discussion

The quantitative results for each iteration of the model is
listed in Table 1. We summarize the results of the final model ar-
chitecture as compared to the baseline Table 2 (note the LSTM
baseline uses MSE loss while our model uses Smooth L1 loss).
We notice that our model, which incorporates the vehicle’s cam-
era images among other changes, achieves better performance
across the board. Also, we see that this performance gener-
alizes well to both the validation and test sets. We can also
observe that with more data, the performance of the model in-
creases, which suggests that with more data and more compute
resources, this architecture can provide even better performance
on this task.

6.1. Qualitative Results

Figures 3 illustrates the qualitative performance of our trajec-
tory prediction model across diverse driving scenarios. The top
row shows a case where the model chooses to stop at a red light
despite the ”GO STRAIGHT” intent, showcasing its ability to
prioritize visual safety cues over semantic intent. The middle
row highlights a complex maneuver, where the model success-
fully navigates through a road repair zone while avoiding cones,
demonstrating its spatial awareness and planning competence.
The bottom row illustrates a successful rightward trajectory pre-
diction even at nighttime, reflecting the model’s capability to in-
terpret and perform well in adversarial conditions. These cases
validate that the model effectively integrates visual context and
intent to generate safe, situation-aware motion plans.
While the model exhibits strong performance across a range of
driving scenarios, certain failure cases reveal its current limita-
tions, as illustrated in Figure 4. In the top example, the model
fails to predict a correct right-turn trajectory under challenging
nighttime conditions. The scene is heavily affected by adverse
weather—specifically rain, glare, and light dispersion from wet
surfaces. Water droplets on the camera lens and poor illumina-
tion significantly degrade visual clarity, likely leading the model
to misinterpret road boundaries and potential drivable space. In
the bottom example, captured in a dense urban daytime envi-
ronment, the model generates an inaccurate future trajectory.
The scene is visually complex, with closely spaced vehicles and



Model Description of Changes (trained over 250 sample subset) Train
Loss

Val Loss ADE
Train

ADE Val

0 LSTM Baseline (without Images, trained on 1k dataset) 1.235 4.198 35.600 49.521
1 ViT Backbone, Image Projection with Concatenation + Linear Layer,

Past Dynamics MLP, intent encoder Linear layer, fusion MLP
0.222 12.178 6.083 62.779

2 Replace Intent Encoder with raw one hot values, Introduce Early
Stopping

0.161 11.130 7.370 64.482

3 Replace One-Hot Intent with Intent Encoder Linear Layer + ReLU, Early
stopping

0.159 11.153 6.764 60.691

4 Introduce Data Augmentation 0.900 7.989 17.566 55.374

5 Replace past dynamics MLP encoder with single LSTM 1.394 7.116 24.790 59.347
6 Replace MSELoss with SmoothL1 (Huber) Loss 0.337 0.980 23.001 43.903
7 Increased Batch Size from 8 to 32 0.386 1.106 13.834 48.428
8 Batch Size 16 0.380 1.086 16.691 52.448
9 Drop Batch Size down to 8, Introduce Dropout p=0.2 0.731 1.023 36.413 57.282
10 Removed dropout, Replace Intent Encoder with Introduce LLM

embedding
0.407 1.016 17.122 44.125

11 Add a 2-Layer MLP Encoder after LLM Intent Embedding 0.353 0.982 13.182 41.102
12 Split the dynamics LSTM into a position LSTM and kinematics LSTM

(concatenate LSTM outputs)
0.278 1.127 17.411 53.936

13 Introduce dynamics fusion MLP after two dynamics LSTMs 0.326 0.952 20.142 40.707
14 Introduce BERT to Replace the Final Fusion MLP 0.837 1.054 35.056 46.167
15 Replace BERT back to Fusion MLP, Unfreeze Last 2 Layers + Norm

Layers of ViT
0.140 0.881 13.219 41.703

16 Introduce AdamW weight decay of 1e-2 0.146 0.847 10.493 39.197
17 Replace ViT with Swin Transformer 0.636 0.735 24.440 37.222
18 Introduce LayerNorm layer to Image Feature MLP and Final Fusion MLP 0.409 0.792 24.127 34.173
19 Train Over Full 1k dataset, Without Data Augmentation (for speedup) 0.611 0.613 31.333 26.688
20 Train Over Full 1k dataset, With Data Augmentation 0.606 0.663 25.937 29.237

Table 1: Evolution of Model Architecture (experiments above black line use MSE, while others use Smooth L1 loss)

Train
Loss

Val
Loss ADE-T ADE-V

Baseline 1.235 4.198 35.600 49.521
Our Model 0.606 0.663 25.937 29.237

Final ADE of Model on Test Set: 26.96

Table 2: Summary of Results

pedestrians near the intended path. The model appears to strug-
gle in such scenarios, likely misclassifying dynamic agents or
occluded regions as static obstacles. This results in an overly
cautious prediction that diverges significantly from the ground
truth. We hypothesize that this limitation stems from the re-
stricted visual context provided by using only the front three
camera views. Incorporating all eight surround-view cameras
could offer a more comprehensive understanding of the envi-
ronment, enabling better reasoning in such cluttered scenes. Im-
portantly, our model architecture is easily extensible to handle
additional camera inputs, making it scalable to richer perception
setups. These examples emphasize the importance of robust
perception under both low-light and complex urban conditions.
Improving resilience to visual degradation and better reasoning
under occlusion remain key directions for future work.

Further analysis of the trajectories suggests that the model
surprisingly also exhibits emergent behavior. As shown in Fig-
ure 5, the predicted trajectory fails to match the ground truth
path. However, we can notice the reason for this difference
is that the vehicle stops for the pedestrian rather than driving
around them. This suggests that while the model may not ex-
actly match human driving behavior, it still learns to plan its
route safely in complex urban environments.

6.2. On the Utility of Model Components

We experimented with multiple options for each of the com-
ponents, as demonstrated in Table 1. There were particu-
lar changes to the model architecture that realized the most
performance improvement, and each of these high-performing
changes together formed the final model. In particular, the fol-
lowing model changes provided the highest performance in-
creases we observed through our experiments: (1) replacing
MSE loss with Smooth L1 loss, (2) replacing the ViT with a
Swin Transformer, (3) introducing data augmentation, and (4)
embedding intent using natural language inputs.

We saw a performance increasing when changing the loss
function from MSE loss to Smooth L1 loss. This is likely be-
cause the trajectory data in our small dataset was noisy, as ex-
pected since this dataset comprises of abnormal driving situa-



 

Figure 3: Success cases: Top: The model correctly constrains the vehicle to stop at a red light, despite the intent being to go straight.
Middle: The predicted trajectory successfully avoids cones and navigates through a road repair zone. Bottom: Even under nighttime
and adverse weather conditions, the model predicts a smooth right turn, demonstrating robustness to challenging environments.

 

Figure 4: Failure cases: Top: Under low-light and rainy conditions, the model fails to predict a correct right turn, likely due to
degraded visibility from glare, reflections, and water droplets on the lens. Bottom: In a dense urban environment, the model fails to
predict the correct trajectory, potentially misinterpreting nearby pedestrians, moving and parked vehicles



Figure 5: Emergent Behavior: Emergent deceleration behavior in response to a pedestrian crossing. Despite the ”GO STRAIGHT”
intent, the model predicts a significantly slowed trajectory without lateral deviation, implicitly learning to yield rather than reroute.
This highlights the model’s capability to perform nuanced motion planning under complex urban conditions

tions. As a result, MSE loss was heavily sensitive to these out-
lier trajectories compared to Smooth L1 loss, which was able to
provide a better signal for gradient updates during optimization.

Replacing the ViT with the Swin transformer benefitted by
both introducing smaller patch sizes without adding as many
parameters to the model (which allowed for more fine-grained
features within each patch) and takes advantage of the Swin
transformer architecture that better allows it to extract low-level
features from the image. This is particularly important in the
driving scenario, where low-level features such as stop signs
and line dividers can influence the predicted trajectories.

Data augmentation was particularly useful because of the
limited training data we were using. So augmenting the data
made the model more generalizable to unseen images and less
overfit to our training set. Embedding intent using the natural
language input rather than a one-hot encoded vector was the
more surprising of performance increases seen across the ex-
periments. We see that the richer embedding provided by the
pre-trained LLM better conveyed the intent signal than a simple
one-hot vector.

7. Conclusions & Future Work
In this work, we presented an end-to-end vision-based trajec-

tory prediction framework that fuses multi-view camera input,
past motion history, and natural language driving intent. Our ar-
chitecture combines a Swin Transformer as a visual backbone,
LSTM encoders for vehicle dynamics, and a MiniLM-based in-
tent encoder, followed by a fusion network to predict future tra-
jectories. Through extensive qualitative analysis, we demon-
strated that the model can generate safe and context-aware tra-
jectory predictions across a variety of driving scenarios. For
example, it successfully identifies red lights and overrides the
“go straight” intent to stop, maintains proper behaviour in the
presence of road construction by driving within traffic cones,
and performs reasonably well even under nighttime conditions.

Ablation studies highlight the most impactful design
choices: switching from MSE to Smooth L1 loss improved ro-
bustness to noisy, long-tailed trajectory data; adopting the Swin
Transformer allowed for better extraction of fine-grained road
features (e.g., lane lines, stop signs); applying visual data aug-
mentation helped generalization in a low-data regime; and re-
placing one-hot intent vectors with MiniLM-based natural lan-

guage embeddings significantly improved semantic alignment
and downstream prediction quality.

Despite strong performance, failure cases remain in low-
visibility settings (e.g., rain, glare) and highly cluttered urban
environments, where occlusions or poor lighting degrade visual
signal quality and lead to conservative or incorrect predictions.
We also observed early signs of learned collision avoidance be-
havior, as illustrated in Figure 5, although the model does not
yet plan evasive trajectories around obstacles. Additionally, our
current system lacks side and rear camera inputs, which con-
tributed to certain failure cases during testing. These findings
suggest that improving robustness to degraded visual input and
reasoning under uncertainty remains an important direction.

One key limitation of the current architecture is the po-
tential misalignment between independently pretrained com-
ponents—specifically, the Swin Transformer for vision and
MiniLM for language—which are frozen during training. As
these modules are trained on separate modalities and objectives,
their feature embeddings may not be optimally aligned for joint
downstream prediction. In future work, we aim to replace these
disjoint encoders with a unified vision-language model (VLM),
such as Dolphins [11] (this seems very promising), which can
jointly process image and text input within a shared embedding
space.

Another promising direction is to explore diffusion-based
trajectory predictors. Diffusion models offer stronger capa-
bilities for conditional generation and can model uncertainty
over multi-step predictions more effectively than deterministic
regressors. Conditioning trajectory diffusion on fused visual,
motion, and intent embeddings could yield more flexible and
diverse predictions, particularly useful in ambiguous or multi-
modal scenarios.
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