Application of Machine Learning Techniques To Predict Wildfire Risk Using Satellite Imagery
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Project Overview
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e Theimportance of a glven feature changes dependlng which model is
evaluating that data, and is especially apparent in Model #0.

e Applying our proposed method, we achieve
non-trivial performance compared to the baselines
with 37% accuracy

SVM #0
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- e Expected behavior since each model is trained on a different cluster of
SVM #2

K-Means similar images, so each learns to focus on different features
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e Dataobtained from FireRisk dataset[1] and Class

Baseline Majority Pipeline =
contains RGB satellite images of size 320x320x3. Precision | Recall | FI1-Score | Precision | Recall | FI-Score | Precision | Recall | FI-Score 000 300
e Labelled with ground truth of Wildfire Risk level: Very_Low 0.36 0.27 0.31 0.31 1.00 0.47 0.37 0.66 0.47 00 £
“Very Low’-“Very High”, “Non-burnable”, “Water” Low 0.09 0.03 0.04 0.00 0.00 | 0.00 0.28 0.01 0.02 Ao
(7 classes) Moderate 0.14 0.02 0.03 0.00 0.00 0.00 0.24 0.01 0.02 . | . .
: . High 0.00 0.00 0.00 0.00 0.00 0.00 0.22 0.10 0.14 e Many of the features (pixel values) are highly correlated with each other
e Converted to B&W 64x64 image, reduced to 400 Very_High 0.00 | 000 | 000 0.00 | 000 | 000 000 | 000 | 0.00 in the baseline which contributes, in part, to the low performance of the
most salient features using PCA. Non-burnable 0.29 0.75 0.42 0.00 0.00 0.00 0.38 0.58 0.46 ) ’ ’ )
e Use K-Means to cluster similar images - e.g. k=3 Water 0.00 0.00 0.00 0.00 0.00 0.00 0.45 0.10 0.17 baseline model. On the other hand, PCA substantially reduces the feature
includes grass/trees, k=4 includes roads Accuracy 0.29 0.31 0.37 correlation, enabling better performance of the SVM

Table 6: Comparison of Classification Reports for Baseline, Majority, and Pipeline Models
Confusion Matrix - Pipeline

Cluster #3 Visualization Cluster #4 Visualization

Future Research

12 le+02 1 9.6e+02 - 2000
Training and Test Set ||1f0 - e We would like to gxplgre yvhat other machine learning models would
el benefit from the pipeline implemented here.
e Total Training Set Images: 70,331 , : u B Il | e We would also explore if the same principles of clustering and
e Total Validation Set Images: 21,541 - 1250 dimensionality reduction in our unsupervised step could potentially
o Allthree models are trained with 50% of the 1000 improve the performance of deep learning systems as well.

dataset (approx. 35K sample images) and ' ' e
evaluated on an unseen test set of that is
15% of the total dataset (approx. 10K

images) : 1.4e+02
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